Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.451
1.
Fam Community Health ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38728117

This study built a predefined rule-based risk stratification paradigm using 19 factors in a primary care setting that works with rural communities. The factors include medical and nonmedical variables. The nonmedical variables represent 3 demographic attributes and one other factor represents transportation availability. Medical variables represent major clinical variables such as blood pressure and BMI. Many risk stratification models are found in the literature but few integrate medical and nonmedical variables, and to our knowledge, no such model is designed specifically for rural communities. The data used in this study contain the associated variables of all medical visits in 2021. Data from 2022 were used to evaluate the model. After our risk stratification model and several interventions were adopted in 2022, the percentage of patients with high or medium risk of deteriorating health outcomes dropped from 34.9% to 24.4%, which is a reduction of 30%. The medium-complex patient population size, which had been 29% of all patients, decreased by about 4% to 5.7%. According to the analysis, the total risk score showed a strong correlation with 3 risk factors: dual diagnoses, the number of seen providers, and PHQ9 (0.63, 0.54, and 0.45 correlation coefficients, respectively).

2.
Environ Pollut ; 352: 124117, 2024 May 05.
Article En | MEDLINE | ID: mdl-38714231

Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.

3.
Article En | MEDLINE | ID: mdl-38728583

Recently, a meta-analysis has shown that a potentially functional genetic polymorphism (rs7158663 A > G) on the cancer-associated lncRNA MEG3 is associated with the risk of many types of cancer. Given the important role of MEG3 in the development of hepatocellular carcinoma (HCC), the current study evaluated the association of the rs7158663 genetic polymorphism with HCC risk. A total of 271 HCC patients and 267 healthy individuals were included in the current case-control study. Direct sequencing was used to detect the rs7158663 locus genotype of the included individuals. The case-control study showed that the MEG3 rs7158663 genetic polymorphism was associated with the increased risk of developing HCC [GA vs. GG: OR = 1.63, 95% CI = 1.14-2.34, p = 0.009; AA vs. GG: OR = 2.10, 95% CI = 1.10-4.08, p = 0.03; (GA + AA) vs. GG: OR = 1.70, 95% CI = 1.21-2.40, p = 0.003; A vs. G: OR = 1.53, 95% CI = 1.17-2.00, p = 0.002]. In addition, the genotype-tissue expression showed that the rs7158663 AA or GA genotype was associated with reduced MEG3 expression. Bioinformatic analysis showed that the rs7158663 genetic polymorphism not only affects the binding of transcription factors but also interacts with multiple genes through chromatin loops. In summary, the current findings suggest that the rs7158663 genetic polymorphism affecting MEG3 expression is associated with HCC risk and may serve as a marker of genetic susceptibility to HCC. However, the specific molecular mechanisms of the rs7158663 genetic polymorphism in the development of HCC need to be further revealed.

4.
Article En | MEDLINE | ID: mdl-38691150

Urinary tract infection (UTI) is one of the most prevalent bacterial infectious diseases worldwide. However, the resistance of urinary pathogens to other UTI antibiotics such as trimethoprim and trimethoprim/sulphamethoxazole increased. Pivmecillinam is a prodrug of mecillinam, which is effective for the treatment of urinary tract infections. The purpose of this study was to assess the safety, and pharmacokinetics of pivmecillinam and mecillinam after single- and multiple-dose oral administration of pivmecillinam tablets in healthy Chinese subjects. The study also investigated the profile of urinary excretion of mecillinam, as well as the effect of food and gender on the pharmacokinetics of pivmecillinam and mecillinam. This study was a single-center, open-label phase I study carried out in three groups. In total, 34 subjects were included in the study: group 1-food effect study with pivmecillinam 200 mg (n = 12); group 2-single- and multiple-dose study with pivmecillinam 400 mg (n = 12); group 3-single dose study with pivmecillinam 600 mg (n = 10). The plasma and urine concentrations of pivmecillinam and mecillinam were measured, and their pharmacokinetics were calculated. Treatment-emergent adverse events were evaluated and recorded in safety assessments for three groups. No severe adverse events were found in this study. After a single dose of pivmecillinam was taken orally, the maximum plasma concentration (Cmax) and the area under the concentration-time curve (AUC) of pivmecillinam increased in a dose-proportional manner, nor did mecillinam. Food had significant effects on Cmax and AUC0-t of pivmecillinam and Cmax of mecillinam. The mean cumulative percentage of urine excretion of mecillinam at 0 to 24 h ranged from 35.5 to 44.0%. Urinary cumulative excretion is relative to the drug dose, but the diet and multiple-dose administration did not affect the urinary cumulative excretion rate. The safety and pharmacokinetics of pivmecillinam and mecillinam after single- (200/400/600 mg) or multiple-dose (400 mg) administration were demonstrated in healthy Chinese subjects. Food affected the pharmacokinetics of pivmecillinam and mecillinam.

5.
Article En | MEDLINE | ID: mdl-38745497

The pursuit of high-performance electronic devices has driven the research focus toward 2D semiconductors with high electron mobility and suitable band gaps. Previous studies have demonstrated that quasi-2D Bi2O2Se (BOSe) has remarkable physical properties and is a promising candidate for further exploration. Building upon this foundation, the present work introduces a novel concept for achieving nonvolatile and reversible control of BOSe's electronic properties. The approach involves the epitaxial integration of a ferroelectric PbZr0.2Ti0.8O3 (PZT) layer to modify BOSe's band alignment. Within the BOSe/PZT heteroepitaxy, through two opposite ferroelectric polarization states of the PZT layer, we can tune the Fermi level in the BOSe layer. Consequently, this controlled modulation of the electronic structure provides a pathway to manipulate the electrical properties of the BOSe layer and the corresponding devices.

6.
bioRxiv ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38746361

RATIONALE: Asthma is a chronic inflammatory disease of the airways that involves crosstalk between myeloid-derived regulatory cells (MDRCs) and CD4+ T cells. Although small extracellular vesicles (sEVs) are known to mediate cell-cell communication, the role of sEV signaling via mitochondria in perpetuating asthmatic airway inflammation is unknown. OBJECTIVES: We investigated the effects of MDRC-derived exosomes on dysregulated T cell responses in asthmatics. METHODS: Small extracellular vesicles isolated from bronchoalveolar lavage fluid or airway MDRCs of mild to moderate asthmatics or healthy controls were co-cultured with autologous peripheral and airway CD4+ T lymphocytes. sEV internalization, sEV-mediated transfer of mitochondria targeted GFP to T cells, sEV mitochondrial signaling, and subsequent activation, proliferation and polarization of CD4+ T lymphocytes to Th1, Th2 and Th17 subsets were assessed. MEASUREMENTS AND MAIN RESULTS: Airway MDRC-derived sEVs from asthmatics mediated T cell receptor engagement and transfer of mitochondria that induced antigen-specific activation and polarization into Th17 and Th2 cells, drivers of chronic airway inflammation in asthma. CD4+ T cells internalized sEVs containing mitochondria predominantly by membrane fusion, and blocking mitochondrial oxidant signaling in MDRC-derived exosomes mitigated T cell activation. Reactive oxygen species-mediated signaling that elicited T cell activation in asthmatics was sEV-dependent. A Drp1-dependent mitochondrial fission in pro-inflammatory MDRCs promoted mitochondrial packaging within sEVs, which then co-localized with the polarized actin cytoskeleton and mitochondrial networks in the organized immune synapse of recipient T cells. CONCLUSIONS: Our studies indicate a previously unrecognized role for mitochondrial fission and exosomal mitochondrial transfer in dysregulated T cell activation and Th cell differentiation in asthma which could constitute a novel therapeutic target.

7.
Chem Asian J ; : e202400359, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744672

We designed and synthesized a ureido-linked zinc bisporphyrinate [Zn2(UBis)]. CD spectra show that this zinc bisporphyrinate has the ability to sense the chirality of chiral carboxylic acids without derivatization. Our studies suggest that the phenyl ring in the linker forms π-π interactions with porphyrin planes and that the carboxylic acid is coordinated to the zinc in the host-guest complex. DFT calculations show that the bisporphyrin adopts a "Z"-shaped configuration, and that the ureido group forms hydrogen bonds with carboxylic acids. The combination of π-π interactions, coordination interactions and hydrogen bonding interactions leads to the chirality sensing ability of [Zn2(UBis)].

8.
Nat Commun ; 15(1): 4009, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740761

Frequency combs, specialized laser sources emitting multiple equidistant frequency lines, have revolutionized science and technology with unprecedented precision and versatility. Recently, integrated frequency combs are emerging as scalable solutions for on-chip photonics. Here, we demonstrate a fully integrated superconducting microcomb that is easy to manufacture, simple to operate, and consumes ultra-low power. Our turnkey apparatus comprises a basic nonlinear superconducting device, a Josephson junction, directly coupled to a superconducting microstrip resonator. We showcase coherent comb generation through self-started mode-locking. Therefore, comb emission is initiated solely by activating a DC bias source, with power consumption as low as tens of picowatts. The resulting comb spectrum resides in the microwave domain and spans multiple octaves. The linewidths of all comb lines can be narrowed down to 1 Hz through a unique coherent injection-locking technique. Our work represents a critical step towards fully integrated microwave photonics and offers the potential for integrated quantum processors.

9.
Proc Natl Acad Sci U S A ; 121(20): e2319115121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38709931

The endosomal sorting complexes required for transport (ESCRTs) are responsible for membrane remodeling in many cellular processes, such as multivesicular body biogenesis, viral budding, and cytokinetic abscission. ESCRT-III, the most abundant ESCRT subunit, assembles into flat spirals as the primed state, essential to initiate membrane invagination. However, the three-dimensional architecture of ESCRT-III flat spirals remained vague for decades due to highly curved filaments with a small diameter and a single preferred orientation on the membrane. Here, we unveiled that yeast Snf7, a component of ESCRT-III, forms flat spirals on the lipid monolayers using cryogenic electron microscopy. We developed a geometry-constrained Euler angle-assigned reconstruction strategy and obtained moderate-resolution structures of Snf7 flat spirals with varying curvatures. Our analyses showed that Snf7 subunits recline on the membrane with N-terminal motifs α0 as anchors, adopt an open state with fused α2/3 helices, and bend α2/3 gradually from the outer to inner parts of flat spirals. In all, we provide the orientation and conformations of ESCRT-III flat spirals on the membrane and unveil the underlying assembly mechanism, which will serve as the initial step in understanding how ESCRTs drive membrane abscission.


Cryoelectron Microscopy , Endosomal Sorting Complexes Required for Transport , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure , Saccharomyces cerevisiae/metabolism , Cell Membrane/metabolism
10.
Angew Chem Int Ed Engl ; : e202405878, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713005

Lattice mismatch significantly influences microscopic transport in semiconducting devices, affecting interfacial charge behavior and device efficacy. This atomic-level disordering, often overlooked in previous research, is crucial for device efficiency and lifetime. Recent studies have highlighted emerging challenges related to lattice mismatch in perovskite solar cells, especially at heterojunctions, revealing issues like severe tensile stress, increased ion migration, and reduced carrier mobility. This review systematically discusses the effects of lattice mismatch on strain, material stability, and carrier dynamics. It also includes detailed characterizations of these phenomena and summarizes the current strategies including epitaxial growth and buffer layer, as well as explores future solutions to mitigate mismatch-induced issues. We also provide the challenges and prospects for lattice mismatch, aiming to enhance the efficiency and stability of perovskite solar cells, and contribute to renewable energy technology advancements.

11.
Article En | MEDLINE | ID: mdl-38713298

PURPOSE: The unsatisfactory efficacy of PD-L1 antibodies in glioblastoma (GBM) is largely due to the temporal and spatial heterogeneity of PD-L1 expression. Molecular imaging can enhance understanding of the tumor immune microenvironment and guide immunotherapy. However, highly sensitive imaging agents capable of effectively visualizing PD-L1 heterogeneity are limited. This study introduces a novel PET tracer, offering improved imaging of PD-L1 heterogeneity in GBM xenografts, with a comparative analysis to [18F]AlF-NOTA-WL12. METHODS: [18F]AlF-NOTA-PCP2 was synthesized with high purity and its affinity for PD-L1 was characterized using surface plasmon resonance (SPR) and cell binding assays. Its specificity for PD-L1 was evaluated both in vitro using various cell lines and in vivo with GBM xenograft models in NOD/SCID mice. PET/CT imaging was conducted to evaluate the tracer's biodistribution, pharmacokinetics, and ability to quantify tumoral spatial heterogeneity of PD-L1 expression. A focused comparative analysis between [18F]AlF-NOTA-PCP2 and [18F]AlF-NOTA-WL12 was conducted, examining binding affinity, biodistribution, pharmacokinetics, and imaging effectiveness in GBM xenografts. Additionally, human radiation dosimetry estimates compared the safety profiles of both tracers. RESULTS: [18F]AlF-NOTA-PCP2 demonstrated high radiochemical purity (> 95%) and a strong affinity for PD-L1, comparable to [18F]AlF-NOTA-WL12. In vitro and in vivo studies confirmed its specificity for PD-L1, with increased uptake in PD-L1 expressing cells and tumors. Toxicological profiles indicated no significant abnormalities in serum biochemical indicators or major organ tissues. MicroPET/CT imaging showed [18F]AlF-NOTA-PCP2's effectiveness in visualizing PD-L1 expression levels and spatial heterogeneity in GBM xenografts. Comparative studies revealed [18F]AlF-NOTA-PCP2's improved pharmacokinetic properties, including higher tumor-to-blood ratios and lower nonspecific liver uptake, as well as reduced radiation exposure compared to [18F]AlF-NOTA-WL12. CONCLUSION: [18F]AlF-NOTA-PCP2 distinguishes itself as an exceptionally sensitive PET/CT tracer, adept at non-invasively and accurately quantifying PD-L1 expression and its spatial heterogeneity in tumors, especially in GBM. Its favorable pharmacokinetic properties, safety profile, and high affinity for PD-L1 highlight its potential for enhancing the precision of cancer immunotherapy and guiding individualized treatment strategies. While promising, its clinical translation, especially in brain imaging, necessitates further validation in clinical trials.

12.
Inorg Chem ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38713454

In this study, we synthesized and characterized a series of cobalt(II) complexes bearing linear tetradentate N4 ligands. These Co(II)-N4 complexes proved to be efficient catalysts for the cycloaddition reaction between carbon dioxide and epoxides even at room temperature and 1 bar pressure of carbon dioxide without the need for solvents or cocatalysts. Furthermore, when combined with (triphenylphosphoranylidene)ammonium chloride (PPNCl) as a cocatalyst, the Co-N4 catalysts exhibited an impressive turnover frequency of up to 41,000 h-1 for coupling of epichlorohydrin/CO2. These Co(II)-N4 catalysts were found to have excellent stability and reusability, retaining their catalytic activity after they were recycled seven times. Density functional theory (DFT) calculations provided a comprehensive mechanism for the cycloaddition reaction, indicating that the rate-determining step is the epoxide ring opening, in both the presence and absence of PPNCl. Further kinetic studies allow us to determine the activation parameters (ΔH‡, ΔS‡, and ΔG‡ at 25 °C) of the coupling reaction using the Eyring equation. The Gibbs free activation energy obtained from the kinetic studies was in close agreement with that of the DFT calculations. The substituent effect on the cycloaddition reaction of CO2 with various substituted styrene oxides was also examined for the first time.

13.
Asian J Androl ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38727211

ABSTRACT: Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.

14.
Antiviral Res ; 226: 105900, 2024 May 04.
Article En | MEDLINE | ID: mdl-38705200

BACKGROUND & AIMS: The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS: Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS: The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS: The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.

15.
Phys Chem Chem Phys ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38716569

The properties and applications of ionic liquids (ILs) have been widely investigated when they are confined within nanochannels such as carbon nanotubes (CNTs). The confined ILs exhibit very different properties from their bulk state due to a nanoconfinement effect, which plays an important role in the performances of devices with ILs. In this work, we studied the effect of the charge carried by CNTs on confined ILs inside CNTs using molecular dynamics simulations. In charged CNTs, cations and anions are distributed separately along the radial directions, and the transition of orientations of the cations between parallel and vertical to CNTs occurs by changing the charge state of CNTs. The number of hydrogen bonds (HBs) formed by the confined ILs can be reduced by switching the surface charge of CNTs from positive to negative due to the contact modes between cations and anions as well as the distributions of cations in CNTs. The diffusivities along and vertical to the axial direction of CNTs were found to be non-monotonic owing to the "trade-off" effect from both ion pair interlocking and anchoring ILs on the CNT walls. Additionally, the region-dependent dynamics of ILs were also related to the intermolecular interactions in different regions of CNTs. Furthermore, the vibrational modes of ILs were obviously influenced in highly charged CNTs as determined by calculating the density of vibrational states, which demonstrated the transitions in the structure and interactions. The density distributions changed from single layer to double layers when increasing the pore size of neutral CNTs while the hydrogen bonds exhibited a non-monotonic tendency versus the pore sizes. Our results might help to understand the structure and dynamics of confined ILs as well as aid optimizing the performance of devices with ILs.

16.
Acad Radiol ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38702214

RATIONALE AND OBJECTIVES: To develop and validate a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CT) to identify the primary source of liver metastases. MATERIALS AND METHODS: In total, 657 liver metastatic lesions, including breast cancer (BC), lung cancer (LC), colorectal cancer (CRC), gastric cancer (GC), and pancreatic cancer (PC), from 428 patients were collected at three clinical centers from January 2018 to October 2023 series. The lesions were randomly assigned to the training and validation sets in a 7:3 ratio. An additional 112 lesions from 61 patients at another clinical center served as an external test set. A DLR model based on contrast-enhanced CT of the liver was developed to distinguish the five pathological types of liver metastases. Stepwise classification was performed to improve the classification efficiency of the model. Lesions were first classified as digestive tract cancer (DTC) and non-digestive tract cancer (non-DTC). DTCs were divided into CRC, GC, and PC and non-DTCs were divided into LC and BC. To verify the feasibility of the DLR model, we trained classical machine learning (ML) models as comparison models. Model performance was evaluated using accuracy (ACC) and area under the receiver operating characteristic curve (AUC). RESULTS: The classification model constructed by the DLR algorithm showed excellent performance in the classification task compared to ML models. Among the five categories task, highest ACC and average AUC were achieved at 0.563 and 0.796 in the validation set, respectively. In the DTC and non-DTC and the LC and BC classification tasks, AUC was achieved at 0.907 and 0.809 and ACC was achieved at 0.843 and 0.772, respectively. In the CRC, GC, and PC classification task, ACC and average AUC were the highest, at 0.714 and 0.811, respectively. CONCLUSION: The DLR model is an effective method for identifying the primary source of liver metastases.

18.
Front Nutr ; 11: 1366435, 2024.
Article En | MEDLINE | ID: mdl-38689935

Breast milk (BM) is a primary biofluid that plays a crucial role in infant development and the regulation of the immune system. As a class of rich biomolecules in BM, microRNAs (miRNAs) are regarded as active factors contributing to infant growth and development. Surprisingly, these molecules exhibit resilience in harsh conditions, providing an opportunity for infants to absorb them. In addition, many studies have shown that miRNAs in breast milk, when absorbed into the gastrointestinal system, can act as a class of functional regulators to effectively regulate gene expression. Understanding the absorption pattern of BM miRNA may facilitate the creation of formula with a more optimal miRNA balance and pave the way for novel drug delivery techniques. In this review, we initially present evidence of BM miRNA absorption. Subsequently, we compile studies that integrate both in vivo and in vitro findings to illustrate the bioavailability and biodistribution of BM miRNAs post-absorption. In addition, we evaluate the strengths and weaknesses of previous studies and discuss potential variables contributing to discrepancies in their outcomes. This literature review indicates that miRNAs can be absorbed and act as regulatory agents.

19.
Front Immunol ; 15: 1372441, 2024.
Article En | MEDLINE | ID: mdl-38690269

Background and aims: Cuproptosis has emerged as a significant contributor in the progression of various diseases. This study aimed to assess the potential impact of cuproptosis-related genes (CRGs) on the development of hepatic ischemia and reperfusion injury (HIRI). Methods: The datasets related to HIRI were sourced from the Gene Expression Omnibus database. The comparative analysis of differential gene expression involving CRGs was performed between HIRI and normal liver samples. Correlation analysis, function enrichment analyses, and protein-protein interactions were employed to understand the interactions and roles of these genes. Machine learning techniques were used to identify hub genes. Additionally, differences in immune cell infiltration between HIRI patients and controls were analyzed. Quantitative real-time PCR and western blotting were used to verify the expression of the hub genes. Results: Seventy-five HIRI and 80 control samples from three databases were included in the bioinformatics analysis. Three hub CRGs (NLRP3, ATP7B and NFE2L2) were identified using three machine learning models. Diagnostic accuracy was assessed using a receiver operating characteristic (ROC) curve for the hub genes, which yielded an area under the ROC curve (AUC) of 0.832. Remarkably, in the validation datasets GSE15480 and GSE228782, the three hub genes had AUC reached 0.904. Additional analyses, including nomograms, decision curves, and calibration curves, supported their predictive power for diagnosis. Enrichment analyses indicated the involvement of these genes in multiple pathways associated with HIRI progression. Comparative assessments using CIBERSORT and gene set enrichment analysis suggested elevated expression of these hub genes in activated dendritic cells, neutrophils, activated CD4 memory T cells, and activated mast cells in HIRI samples versus controls. A ceRNA network underscored a complex regulatory interplay among genes. The genes mRNA and protein levels were also verified in HIRI-affected mouse liver tissues. Conclusion: Our findings have provided a comprehensive understanding of the association between cuproptosis and HIRI, establishing a promising diagnostic pattern and identifying latent therapeutic targets for HIRI treatment. Additionally, our study offers novel insights to delve deeper into the underlying mechanisms of HIRI.


Computational Biology , Machine Learning , Reperfusion Injury , Humans , Computational Biology/methods , Reperfusion Injury/genetics , Reperfusion Injury/immunology , Reperfusion Injury/diagnosis , Gene Expression Profiling , Liver/metabolism , Liver/immunology , Liver/pathology , Animals , Protein Interaction Maps , Mice , Gene Regulatory Networks , Databases, Genetic , Transcriptome , Male , Biomarkers
20.
Med Biol Eng Comput ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38700615

Surface electromyography (sEMG) signal is a kind of physiological signal reflecting muscle activity and muscle force. At present, the existing methods of recognizing human motion intention need more than two sensors to recognize more than two kinds of movements, the sensor pasting positions are special, and the hardware conditions for execution are high. In this work, a real-time motion intention recognition method based on Morse code is proposed and applied to the mechanical hand. The short-time and long-term muscle contraction signals collected by a single sEMG sensor were extracted and encoded with the Morse code method, and then the developed mapping method from Morse code to six hand movements were used to recognize hand movements. The average recognition accuracy of hand movements was 94.8704 ± 2.3556%, the average adjusting time was 34.89 s for all subjects, and the execution time of a single movement was 381 ms. The corresponding experiment video can be found in the attachment to show the experiment. The method proposed in this work is a method with one sensor to recognize six movements, low hardware conditions, high recognition accuracy, and insensitive to the difference of sensor pasting position.

...